SWRL Net: A Spectral, Residual Deep Learning Model for Improving Short-Term Wave Forecasts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Learning Framework for Short-term Power Load Forecasting

The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity pri...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Spectral Norm Regularization for Improving the Generalizability of Deep Learning

We investigate the generalizability of deep learning based on the sensitivity to input perturbation. We hypothesize that the high sensitivity to the perturbation of data degrades the performance on it. To reduce the sensitivity to perturbation, we propose a simple and effective regularization method, referred to as spectral norm regularization, which penalizes the high spectral norm of weight m...

متن کامل

Road Extraction by Deep Residual U-Net

Road extraction from aerial images has been a hot research topic in the field of remote sensing image analysis. In this letter, a semantic segmentation neural network which combines the strengths of residual learning and U-Net is proposed for road area extraction. The network is built with residual units and has similar architecture to that of U-Net. The benefits of this model is two-fold: firs...

متن کامل

DR2-Net: Deep Residual Reconstruction Network for Image Compressive Sensing

Most traditional algorithms for compressive sensing image reconstruction suffer from the intensive computation. Recently, deep learning-based reconstruction algorithms have been reported, which dramatically reduce the time complexity than iterative reconstruction algorithms. In this paper, we propose a novel Deep Residual Reconstruction Network (DRNet) to reconstruct the image from its Compress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Weather and Forecasting

سال: 2020

ISSN: 0882-8156,1520-0434

DOI: 10.1175/waf-d-19-0254.1